Markscheme

May 2017

Physics

Higher level

Paper 2

16 pages

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1	a	i	$\begin{aligned} & \frac{1}{2} v^{2}=0.24 \mathrm{gh} \checkmark \\ & v=11.9 《 \mathrm{~ms}^{-1} » \end{aligned}$	Award GPE lost $=65 \times 9.81 \times 30=« 19130 \mathrm{~J} » .$ Must see the 11.9 value for MP2, not simply 12. Allow $g=9.8 \mathrm{~ms}^{-2}$.	2
	a	ii	internal energy is the total KE «and PE» of the molecules/particles/atoms in an object \checkmark temperature is a measure of the average KE of the molecules/particles/atoms	Award [1 max] if there is no mention of molecules/particles/atoms.	2
	b	i	arrow vertically downwards from dot labelled weight $/ \mathrm{W} / \mathrm{mg} /$ gravitational force $/ \mathrm{F}_{g} / \mathrm{F}_{\text {gravitational }}$ AND arrow vertically upwards from dot labelled reaction force/R/normal contact force/N/F $\mathrm{F}_{\mathrm{N}} \checkmark$ $W>R \checkmark$	Do not allow gravity. Do not award MP1 if additional 'centripetal' force arrow is added. Arrows must connect to dot. Ignore any horizontal arrow labelled friction. Judge by eye for MP2. Arrows do not have to be correctly labelled or connect to dot for MP2.	2

Question			Answers	Notes	Total
1	b	ii	ALTERNATIVE 1 recognition that centripetal force is required $/ \frac{m v^{2}}{r}$ seen \checkmark $=468 \text { «N» } \checkmark$ $\mathrm{W} / 640 \mathrm{~N}$ (weight) is larger than the centripetal force required, so the skier does not lose contact with the ground \checkmark ALTERNATIVE 2 recognition that centripetal acceleration is required $/ \frac{v^{2}}{r}$ seen \checkmark $\mathrm{a}=7.2 \text { «} \mathrm{m} \mathrm{~s}^{-2 »} \downarrow$ g is larger than the centripetal acceleration required, so the skier does not lose contact with the ground \checkmark ALTERNATIVE 3 recognition that to lose contact with the ground centripetal force \geq weight \checkmark calculation that $\mathrm{v} \geq 14$ «ms $^{-1} » \checkmark$ comment that 12 « $\mathrm{ms}^{-1} »$ is less than 14 « $\mathrm{ms}^{-1} »$ so the skier does not lose contact with the ground \checkmark ALTERNATIVE 4 recognition that centripetal force is required / $\frac{m v^{2}}{r}$ seen \checkmark calculation that reaction force $=172$ «N» reaction force >0 so the skier does not lose contact with the ground \checkmark	Do not award a mark for the bald statement that the skier does not lose contact with the ground.	3

Question			Answers	Notes	Total
1			ALTERNATIVE 1 $0=8.2^{2}+2 \times a \times 24$ therefore $a=«-» 1.40$ «ms $^{-2} » \checkmark$ friction force $=m a=65 \times 1.4=91 《 \mathrm{~N} »$ coefficient of friction $=\frac{91}{65 \times 9.81}=0.14 \checkmark$ ALTERNATIVE 2 $\begin{aligned} & K E=\frac{1}{2} m \nu^{2}=0.5 \times 65 \times 8.2^{2}=2185 « \mathrm{~J} » \checkmark \\ & \text { friction force }=\mathrm{KE} / \text { distance }=2185 / 24=91 « \mathrm{~N} » \checkmark \\ & \text { coefficient of friction }=\frac{91}{65 \times 9.81}=0.14 \checkmark \end{aligned}$	Allow ECF from MP1.	3
	d	i	$« 76 \times 9.6 »=730 \checkmark$ Ns $\mathbf{O R} \mathrm{kg} \mathrm{ms}^{-1} \downarrow$		2
	d	ii	safety net extends stopping time $F=\frac{\Delta p}{\Delta t}$ therefore F is smaller «with safety net» OR force is proportional to rate of change of momentum therefore F is smaller «with safety net» \checkmark	Accept reverse argument.	2

Question			Answers	Notes	Total
3	a		solar heating panel converts solar/radiation/photon/light energy into thermal energy AND photovoltaic cell converts solar/radiation/photon/light energy into electrical energy	Accept internal energy of water.	1
	b		$\begin{aligned} & \text { power received }=240 \times 25000=« 6.0 \mathrm{MW} » \\ & \text { efficiency «=} \frac{1.6}{6.0} »=0.27 / 27 \% \end{aligned}$		2
	C	i	$\begin{aligned} & \text { area }=\pi \times 17^{2} «=908 \mathrm{~m}^{2} » \\ & \text { power }=\frac{1}{2} \times 908 \times 1.3 \times 7.5^{3} «=0.249 \mathrm{MW} » \\ & \text { number of turbines }<=\frac{1.6}{0.249}=6.4 »=7 \end{aligned}$	Only allow integer value for MP3. Award [2 max] for 25 turbines (ECF from incorrect power) Award [2 max] for 26 turbines (ECF from incorrect radius)	3
		ii	«efficiency is less than 100% as» not all KE of air can be transferred to KE of blades OR air needs to retain KE to escape \checkmark thermal energy is lost due to friction in turbine/dynamo/generator \checkmark	Allow velocity of air after turbine is not zero.	2

Question			Answers	Notes	Total
4	a	i	$I «=\frac{8.5 \times 10^{3}}{240} »=35 « A » \checkmark$		1
	a	ii	$\begin{aligned} & R=\frac{1.7 \times 10^{-8} \times 10}{6.0 \times 10^{-6}} \\ & =0.028 « \Omega » \end{aligned}$	Allow missed powers of 10 for MP1.	2
	a	iii	power $=« 35^{2} \times 0.028 »=34$ «W» \downarrow	Allow 35-36 W if unrounded figures for R or I are used. Allow ECF from (a)(i) and (a)(ii).	1
	b		«as temperature increases» there is greater vibration of the metal atoms/lattice/lattice ions OR increased collisions of electrons \checkmark drift velocity decreases «so current decreases» \checkmark «as V constant so" R increases \checkmark	Award [0] for suggestions that the speed of electrons increases so resistance decreases.	3
	C		$\begin{aligned} & \text { recognition that power }=\text { flow rate } \times c \Delta T \checkmark \\ & \text { flow rate «= } \frac{\text { power }}{c \Delta T} \text { " }=\frac{8.5 \times 10^{3}}{4200 \times 35} \checkmark \\ & =0.058<\mathrm{kg} \mathrm{~s}^{-1} » \checkmark \\ & \mathrm{~kg} \mathrm{~s}^{-1} / \mathrm{g} \mathrm{~s}^{-1} / \mathrm{I} \mathrm{~s}^{-1} / \mathrm{ml} \mathrm{~s}^{-1} / \mathrm{m}^{3} \mathrm{~s}^{-1} \checkmark \end{aligned}$	Allow MP4 if a bald flow rate unit is stated. Do not allow imperial units.	4

Question			Answers	Notes	Total
5	a		Meson: quark-antiquark pair \checkmark Baryon: 3 quarks \checkmark		2
	b	i	Alternative 1 strange quark changes «flavour» to an up quark \checkmark changes in quarks/strangeness happen only by the weak interaction \checkmark Alternative 2 Strangeness is not conserved in this decay «because the strange quark changes to an up quark» \checkmark Strangeness is not conserved during the weak interaction \checkmark	Do not allow a bald answer of weak interaction.	2
		ii	arrows drawn in the direction shown \checkmark	Both needed for [1] mark.	1
		iii	$W^{-} \checkmark$	Do not allow W or W^{+}.	1
	c		it lowers the cost to individual nations, as the costs are shared \checkmark international co-operation leads to international understanding $\boldsymbol{O R}$ historical example of co-operation OR co-operation always allows science to proceed \checkmark large quantities of data are produced that are more than one institution/research group can handle \checkmark co-operation allows effective analysis\collaboration of able scientists \checkmark	Any one.	1 max

| Question | | Answers | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6}$ | \mathbf{d} | | available energy to melt one kg 1.72×10^{5} «J» \checkmark
 fraction that melts is $\frac{1.72 \times 10^{5}}{3.3 \times 10^{5}}=0.52$ OR $52 \% \checkmark$ | Allow ECF from MP1.
 Allow 53\% from use of 590
 ms ${ }^{-1}$. |

Question		Answers	Notes	Total
7	a	acceleration/restoring force is proportional to displacement \checkmark and in the opposite direction/directed towards equilibrium		2
	b	ALTERNATIVE 1 $\begin{aligned} & \frac{T_{1}^{2}}{T_{2}^{2}}=\frac{m_{1}}{m_{2}} \checkmark \\ & \text { mass }=0.38 / 0.39 \text { «kg» } \checkmark \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & \text { «use of } T=2 \pi \sqrt{\frac{m}{k}} \gg k=28 \text { «Nm }{ }^{-1} » \checkmark \\ & \text { «use of } T=2 \pi \sqrt{\frac{m}{k}}>m=0.38 / 0.39 \text { «kg» } \end{aligned}$	Allow ECF from MP1.	2
	c	$\begin{aligned} & \omega=« \frac{2 \pi}{0.74} »=8.5 \text { «rads }^{-1} » \checkmark \\ & \text { total energy }=\frac{1}{2} \times 0.39 \times 8.5^{2} \times\left(4.8 \times 10^{-2}\right)^{2} \\ & =0.032 \text { «J» } \checkmark \end{aligned}$	Allow ECF from (b) and incorrect ω. Allow answer using k from part (b).	3
	d	spring constant/k/stiffness would increase T would be smaller fractional uncertainty in T would be greater, so fractional uncertainty of mass of block would be greater		3

| Question | | Answers | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \mathbf{e} | \mathbf{i} | left \checkmark | $\mathbf{1}$ |
| | | ii | coils to the right of P move right and the coils to the left move left \checkmark
 hence P at centre of rarefaction \checkmark | Do not allow a bald statement
 of rarefaction or answers that
 don't include reference to the
 movement of coils.
 Allow ECF from MP1 if the
 movement of the coils imply a
 compression. |

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{8}$ | a | the size of the induced emf \checkmark
 is proportional/equal to the rate of change of flux linkage \checkmark | The word 'induced' is
 required here.
 Allow correctly defined
 symbols from a correct
 equation. 'Induced' is
 required for MP1. | 2 |

Question			Answers	Notes	Total
9	a		Observation 1: particle - photon energy is below the work function OR $E=h f$ and energy is too small «to emit electrons» \downarrow wave - the energy of an em wave is independent of frequency Observation 2: particle - a single electron absorbs the energy of a single photon «in an almost instantaneous interaction" wave - it would take time for the energy to build up to eject the electron \checkmark		4
	b	i	attempt to calculate gradient of graph $=\left\langle\frac{4.2 \times 10^{-19}}{6.2 \times 10^{14}} \gg\right.$ $=6.8-6.9 \times 10^{-34}$ «Js» \checkmark	Do not allow a bald answer of $6.63 \times 10^{-34} \mathrm{Js}$ or $6.6 \times 10^{-34} \mathrm{Js}$.	2
		ii	ALTERNATIVE 1 minimum energy required to remove an electron «from the metal surface» ALTERNATIVE 2 energy required to remove the least tightly bound electron «from the metal surface» \checkmark		1
		iii	ALTERNATIVE 1 reading of y intercept from graph in range $3.8-4.2 \times 10^{-19}$ « $»$ conversion to $\mathrm{eV}=2.4-2.6$ «e V » ALTERNATIVE 2 reading of x intercept from graph $« 5.8-6.0 \times 10^{14} \mathrm{~Hz}$ » and using $h f_{0}$ to get $3.8-4.2 \times 10^{-19}$ 《 J " conversion to $\mathrm{eV}=2.4-2.6$ «e V » \checkmark		2

| Question | | Answers | Total | |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathbf{9}$ | \mathbf{c} | line parallel to existing line \checkmark
 to the right of the existing line \checkmark | | |

