

Markscheme

May 2017

Physics

Higher level

Paper 2

16 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Qı	Question		Answers	Notes	Total
1	а	i	$\frac{1}{2}v^2 = 0.24 \mathrm{gh} \checkmark$	Award GPE lost = 65 × 9.81 × 30 = «19130 J ».	
			$v = 11.9 \text{ cm s}^{-1} \text{ w}$	Must see the 11.9 value for MP2, not simply 12.	2
				Allow $g = 9.8 \text{ ms}^{-2}$.	
	а	ii	internal energy is the total KE «and PE» of the molecules/particles/atoms in an object ✓ temperature is a measure of the average KE of the molecules/particles/atoms ✓	Award [1 max] if there is no mention of molecules/particles/atoms.	2
	b	i	arrow vertically downwards from dot labelled weight/W/mg/gravitational force/F _g /F _{gravitational}	Do not allow gravity.	
		AND arrow vertically upwards from dot labelled reaction force/R/normal contact force/N/F _N ✓ W > R ✓	Do not award MP1 if additional 'centripetal' force arrow is added.		
				Arrows must connect to dot.	
				Ignore any horizontal arrow labelled friction.	2
				Judge by eye for MP2. Arrows do not have to be correctly labelled or connect to dot for MP2.	

Q	uesti	ion	Answers	Notes	Total
1	b	ii	ALTERNATIVE 1 recognition that centripetal force is required / $\frac{mv^2}{r}$ seen ✓	Do not award a mark for the bald statement that the skier does not lose contact with the ground.	
			= 468 «N» ✓		
			W/640 N (weight) is larger than the centripetal force required, so the skier does not lose contact with the ground ✓		
			ALTERNATIVE 2		
			recognition that centripetal acceleration is required / $\frac{v^2}{r}$ seen \checkmark		
			$a = 7.2 \text{ «m s}^{-2} \text{»} \checkmark$		
			g is larger than the centripetal acceleration required, so the skier does not lose contact with the ground \checkmark		3
			ALTERNATIVE 3		
			recognition that to lose contact with the ground centripetal force ≥ weight ✓		
			calculation that v ≥ 14 «ms ⁻¹ » ✓		
			comment that 12 «ms⁻¹» is less than 14 «ms⁻¹» so the skier does not lose contact with the ground ✓		
			ALTERNATIVE 4		
			recognition that centripetal force is required / $\frac{mv^2}{r}$ seen \checkmark		
			calculation that reaction force = 172 «N» ✓		
			reaction force > 0 so the skier does not lose contact with the ground ✓		

Qı	uesti	on	Answers	Notes	Total
1	С		ALTERNATIVE 1	Allow ECF from MP1.	
			$0 = 8.2^2 + 2 \times a \times 24$ therefore $a = \text{``-} \text{``1.40 '`m's}^{-2} \text{``} \checkmark$		
			friction force = $ma = 65 \times 1.4 = 91$ «N» \checkmark		
			coefficient of friction = $\frac{91}{65 \times 9.81} = 0.14$ \checkmark		
			ALTERNATIVE 2		3
			$KE = \frac{1}{2}mv^2 = 0.5 \times 65 \times 8.2^2 = 2185 \text{ "J"}$		
			friction force = KE/distance =2185/24 = 91«N» ✓		
			coefficient of friction = $\frac{91}{65 \times 9.81} = 0.14$		
	d	i	«76×9.6» = 730 ✓		
			Ns <i>OR</i> kg ms ⁻¹ ✓		2
	d	ii	safety net extends stopping time ✓	Accept reverse argument.	
			$F = \frac{\Delta p}{\Delta t}$ therefore F is smaller «with safety net»		2
			OR		
			force is proportional to rate of change of momentum therefore F is smaller «with safety net» \checkmark		

Q	Question		Answers	Notes	Total
2	а		when 2 waves meet the resultant displacement ✓ is the «vector» sum of their individual displacements ✓	Displacement should be mentioned at least once in MP 1 or 2.	2
	b		$\lambda = \frac{4.7 \times 10^{-3} \times 0.35 \times 10^{-3}}{2.4} \checkmark$ = 6.9 × 10 ⁻⁷ «m» \checkmark answer to 2 SF \checkmark	Allow missed powers of 10 for MP1.	3
	С		green wavelength smaller than red ✓ fringe separation / distance between maxima decreases ✓	Allow ECF from MP1.	2
	d		bright central maximum ✓ subsidiary maxima «on either side» ✓ the width of the central fringe is twice / larger than the width of the subsidiary/secondary fringes/maxima OR intensity of pattern is decreased ✓	Allow marks from a suitably labelled intensity graph for single slit diffraction.	2 max

Qı	Question		Answers	Notes	Total
3	а		solar heating panel converts solar/radiation/photon/light energy into thermal energy AND photovoltaic cell converts solar/radiation/photon/light energy into electrical energy ✓	Accept internal energy of water.	1
	b		power received = $240 \times 25000 = \text{«}6.0 \text{ MW}$ » \checkmark efficiency $\text{«}=\frac{1.6}{6.0}$ » = $0.27 / 27\%$ \checkmark		2
	С	i	area = $\pi \times 17^2$ «= 908 m²» \checkmark power = $\frac{1}{2} \times 908 \times 1.3 \times 7.5^3$ «= 0.249 MW» \checkmark number of turbines «= $\frac{1.6}{0.249}$ = 6.4 » = 7 \checkmark	Only allow integer value for MP3. Award [2 max] for 25 turbines (ECF from incorrect power) Award [2 max] for 26 turbines (ECF from incorrect radius)	3
		ii	«efficiency is less than 100 % as» not all KE of air can be transferred to KE of blades OR air needs to retain KE to escape thermal energy is lost due to friction in turbine/dynamo/generator ✓	Allow velocity of air after turbine is not zero.	2

Qı	uesti	on	Answers	Notes	Total
4	а	i	$I = \frac{8.5 \times 10^3}{240}$ = 35«A» \checkmark		1
	а	ii	$R = \frac{1.7 \times 10^{-8} \times 10}{6.0 \times 10^{-6}} \checkmark$ = 0.028 «Ω» \checkmark	Allow missed powers of 10 for MP1.	2
	а	iii	power = «35² × 0.028» = 34 «W» ✓	Allow 35 – 36 W if unrounded figures for R or I are used. Allow ECF from (a)(i) and (a)(ii).	1
	b		«as temperature increases» there is greater vibration of the metal atoms/lattice/lattice ions <i>OR</i> increased collisions of electrons ✓ drift velocity decreases «so current decreases» ✓ «as V constant so» <i>R</i> increases ✓	Award [0] for suggestions that the speed of electrons increases so resistance decreases.	3
	С		recognition that power = flow rate $\times c\Delta T$ \checkmark flow rate $\ll \frac{\text{power}}{c\Delta T} \approx \frac{8.5 \times 10^3}{4200 \times 35}$ \checkmark = 0.058 $\ll \text{kg s}^{-1} \approx \frac{8.5 \times 10^3}{4200 \times 35}$ \checkmark kg s ⁻¹ / g s ⁻¹ / l s ⁻¹ / ml s ⁻¹ / m ³ s ⁻¹ \checkmark	Allow MP4 if a bald flow rate unit is stated. Do not allow imperial units.	4

Q	uesti	on	Answers	Notes	Total
5	а		Meson: quark-antiquark pair ✓ Baryon: 3 quarks ✓		2
	b	i	Alternative 1 strange quark changes «flavour» to an up quark ✓ changes in quarks/strangeness happen only by the weak interaction ✓ Alternative 2 Strangeness is not conserved in this decay «because the strange quark changes to an up quark» ✓ Strangeness is not conserved during the weak interaction ✓	Do not allow a bald answer of weak interaction.	2
		ii	arrows drawn in the direction shown \checkmark	Both needed for [1] mark.	1
		iii	<i>W</i> ⁻ ✓	Do not allow W or W+.	1
	С		it lowers the cost to individual nations, as the costs are shared ✓ international co-operation leads to international understanding <i>OR</i> historical example of co-operation <i>OR</i> co-operation always allows science to proceed ✓ large quantities of data are produced that are more than one institution/research group can handle ✓ co-operation allows effective analysis\collaboration of able scientists ✓	Any one.	1 max

Q	uestion	Answers	Notes	Total
6	а	the field lines/arrows are further apart at greater distances from the surface ✓		1
	b	circle centred on Planet X ✓		
		three units from Planet X centre ✓		
		-3 <i>V</i>		
		<u> </u>		2
		Y		
		planet X		
		surface		
	С	loss in gravitational potential = $\frac{6.67 \times 10^{-11} \times 3.1 \times 10^{21}}{1.2 \times 10^{6}}$	Allow ECF from MP1.	
		$\ll 1.72 \times 10^5 \text{Jkg}^{-1} $		
		equate to $\frac{1}{2}v^2$		3
		$V = 590 \text{ cm s}^{-1} \text{ w}$		

Q	Question		Answers	Notes	Total
6	d		available energy to melt one kg 1.72×10^5 «J» \checkmark fraction that melts is $\frac{1.72 \times 10^5}{3.3 \times 10^5} = 0.52$ OR 52 % \checkmark	Allow ECF from MP1. Allow 53% from use of 590 ms ⁻¹ .	2

Question		ion	Answers	Notes	Total
7	а		acceleration/restoring force is proportional to displacement ✓ and in the opposite direction/directed towards equilibrium ✓		2
	b		ALTERNATIVE 1 $ \frac{T_1^2}{T_2^2} = \frac{m_1}{m_2} \checkmark $ mass = 0.38 / 0.39 «kg» \checkmark ALTERNATIVE 2 «use of $T = 2\pi \sqrt{\frac{m}{k}}$ » $k = 28$ «Nm ⁻¹ » \checkmark «use of $T = 2\pi \sqrt{\frac{m}{k}}$ » $m = 0.38 / 0.39$ «kg» \checkmark	Allow ECF from MP1.	2
	С		$\omega = \frac{2\pi}{0.74}$ = 8.5 «rads ⁻¹ » \checkmark total energy = $\frac{1}{2} \times 0.39 \times 8.5^2 \times (4.8 \times 10^{-2})^2$ \checkmark = 0.032 «J» \checkmark	Allow ECF from (b) and incorrect ω. Allow answer using k from part (b).	3
	d		spring constant/k/stiffness would increase \checkmark T would be smaller \checkmark fractional uncertainty in T would be greater, so fractional uncertainty of mass of block would be greater \checkmark		3

Qı	Question		Answers Notes		Total
	е	i	left ✓		1
		ii	coils to the right of P move right and the coils to the left move left ✓ hence P at centre of rarefaction ✓	Do not allow a bald statement of rarefaction or answers that don't include reference to the movement of coils. Allow ECF from MP1 if the movement of the coils imply a compression.	2

Q	Question		Answers	Notes	Total
8	а		the size of the <u>induced</u> emf ✓ is proportional/equal to the rate of change of flux linkage ✓	The word 'induced' is required here. Allow correctly defined symbols from a correct equation. 'Induced' is required for MP1.	2
	b	i	varying voltage/current in primary coil produces a varying magnetic field ✓ this produces a change in flux linkage / change in magnetic field in the secondary coil ✓ a «varying» emf is induced/produced/generated in the secondary coil ✓ voltage is stepped down as there are more turns on the primary than the secondary ✓	Comparison of number of turns is required for MP4.	4
	b	ii	output voltage = $\frac{90 \times 240}{1800} \checkmark$ = 12 «V» \checkmark		2
	С		laminated core reduces eddy currents ✓ less thermal energy is transferred to the surroundings ✓		2
	d		for a certain power to be transmitted, large V means low $I \checkmark$ less thermal energy loss as $P = I^2R$ / joule heating \checkmark		2

Question		ion	Answers	Notes	Total
9	а		Observation 1: particle – photon energy is below the work function OR $E = hf$ and energy is too small «to emit electrons» \checkmark wave – the energy of an em wave is independent of frequency \checkmark Observation 2: particle – a single electron absorbs the energy of a single photon «in an almost instantaneous interaction» \checkmark		4
	b	i	wave – it would take time for the energy to build up to eject the electron \checkmark attempt to calculate gradient of graph = $\ll \frac{4.2 \times 10^{-19}}{6.2 \times 10^{14}}$ w \checkmark = $6.8 - 6.9 \times 10^{-34}$ «Js» \checkmark	Do not allow a bald answer of 6.63 x 10 ⁻³⁴ Js or 6.6 x 10 ⁻³⁴ Js.	2
		ii	ALTERNATIVE 1 minimum energy required to remove an electron «from the metal surface» ✓ ALTERNATIVE 2 energy required to remove the least tightly bound electron «from the metal surface» ✓		1
		iii	<i>ALTERNATIVE 1</i> reading of <i>y</i> intercept from graph in range $3.8 - 4.2 \times 10^{-19}$ «J» ✓ conversion to $eV = 2.4 - 2.6$ «eV» ✓ <i>ALTERNATIVE 2</i> reading of x intercept from graph «5.8 - 6.0 × 10 ¹⁴ Hz» and using hf_0 to get $3.8 - 4.2 \times 10^{-19}$ «J» ✓ conversion to $eV = 2.4 - 2.6$ «eV» ✓		2

Question		on	Answers	Notes	Total
9	С		line parallel to existing line ✓		2
			to the right of the existing line ✓		_